Expression of human inducible nitric oxide synthase in a tetrahydrobiopterin (H4B)-deficient cell line: H4B promotes assembly of enzyme subunits into an active dimer.
نویسندگان
چکیده
Murine inducible nitric oxide (NO) synthase (iNOS) is catalytically active only in dimeric form. Assembly of its purified subunits into a dimer requires H4B. To understand the structure-activity relationships of human iNOS, we constitutively expressed recombinant human iNOS in NIH 3T3 cells by using a retroviral vector. These cells are deficient in de novo H4B biosynthesis and the role of H4B in the expression and assembly of active iNOS in an intact cell system could be studied. In the absence of added H4B, NO synthesis by the cells was minimal, whereas cells grown with supplemental H4B or the H4B precursor sepiapterin generated NO (74.1 and 63.3 nmol of nitrite per 10(6) cells per 24 h, respectively). NO synthesis correlated with an increase in intracellular H4B but no increase in iNOS protein. Instead, an increased percentage of dimeric iNOS was observed, rising from 20% in cytosols from unsupplemented cells to 66% in H4B-supplemented cell cytosols. In all cases, only dimeric iNOS displayed catalytic activity. Cytosols prepared from H4B-deficient cells exhibited little iNOS activity but acquired activity during a 60- to 120-min incubation with H4B, reaching final activities of 60-72 pmol of citrulline per mg of protein per min. Reconstitution of cytosolic NO synthesis activity was associated with conversion of monomers into dimeric iNOS during the incubation. Thus, human iNOS subunits dimerize to form an active enzyme, and H4B plays a critical role in promoting dimerization in intact cells. This reveals a post-translational mechanism by which intracellular H4B can regulate iNOS expression.
منابع مشابه
Regulation of tetrahydrobiopterin biosynthesis by shear stress.
An essential cofactor for the endothelial NO synthase is tetrahydrobiopterin (H4B). In the present study, we show that in human endothelial cells, laminar shear stress dramatically increases H4B levels and enzymatic activity of GTP cyclohydrolase (GTPCH)-1, the first step of H4B biosynthesis. In contrast, protein levels of GTPCH-1 were not affected by shear. Shear did not change protein express...
متن کاملHeme distortion modulated by ligand-protein interactions in inducible nitric-oxide synthase.
The catalytic center of nitric-oxide synthase (NOS) consists of a thiolate-coordinated heme macrocycle, a tetrahydrobiopterin (H4B) cofactor, and an l-arginine (l-Arg)/N-hydroxyarginine substrate binding site. To determine how the interplay between the cofactor, the substrates, and the protein matrix housing the heme regulates the enzymatic activity of NOS, the CO-, NO-, and CN(-)-bound adducts...
متن کاملCommunication between the Zinc and Tetrahydrobiopterin Binding Sites in Nitric Oxide Synthase
The nitric oxide synthase (NOS) dimer is stabilized by a Zn(2+) ion coordinated to four symmetry-related Cys residues exactly along the dimer 2-fold axis. Each of the two essential tetrahydrobiopterin (H4B) molecules in the dimer interacts directly with the heme, and each H4B molecule is ~15 Å from the Zn(2+). We have determined the crystal structures of the bovine endothelial NOS dimer oxygena...
متن کاملCrystal Structure of Constitutive Endothelial Nitric Oxide Synthase A Paradigm for Pterin Function Involving a Novel Metal Center
Nitric oxide, a key signaling molecule, is produced by a family of enzymes collectively called nitric oxide synthases (NOS). Here, we report the crystal structure of the heme domain of endothelial NOS in tetrahydrobiopterin (H4B)-free and -bound forms at 1.95 A and 1.9 A resolution, respectively. In both structures a zinc ion is tetrahedrally coordinated to pairs of symmetry-related cysteine re...
متن کاملTetrahydrobiopterin and endothelial nitric oxide synthase uncoupling.
Tetrahydrobiopterin and Endothelial Nitric Oxide Synthase Uncoupling To the Editor: Gao et al1 reported that oral administration of folate, the tetrahydrobiopterin (H4B) precursor, attenuated endothelial NO synthase (eNOS) uncoupling in abdominal aortic aneurysm. The beneficial effects of H4B supplementation in endothelial dysfunction are beyond dispute, but in vivo demonstration of eNOS (un)co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 92 25 شماره
صفحات -
تاریخ انتشار 1995